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The nonlinear dependence of cellular orientation on an external, time-varying stress field determines the
distribution of orientations in the presence of noise and the characteristic time, �c, for the cell to reach its
steady-state orientation. The short, local cytoskeletal relaxation time distinguishes between high-frequency
�nearly perpendicular� and low-frequency �random or parallel� orientations. However, �c is determined by the
much longer, orientational relaxation time. This behavior is related to experiments for which we predict the
angle and characteristic time as a function of frequency.
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I. INTRODUCTION

The dynamics and mechanics of cells are important for
wound healing, muscle growth, tissue assembly, and devel-
opment. Cells respond to their mechanical environment in an
active manner �e.g., by actively adjusting their contractility�
�1,2� and by reorganizing their stress fibers, adhesions and
traction forces to maintain a tactile set point in the adjacent
matrix �3–6�. For static or quasistatic strain, some cells tend
to orient along the direction of applied stress �7–10� while
some cells maintain a random orientation �11�. However, for
rapidly varying strains, cells tend to orient away from the
stress direction �12,13�; in some cases, this can be identified
with the zero-strain direction.

In this Rapid Communication, we predict the dynamics of
cell orientation as a function of the frequency and amplitude
of the externally applied stretch and random “noise” �mod-
eled as an effective temperature�. At low frequencies, the cell
orientation can be random or nearly parallel to the stress,
depending on whether the cell-matrix mechanical interaction
is, respectively, smaller or larger than the noise. At high fre-
quencies, the cell regulation forces �14,15� typically domi-
nate the noise and the perpendicular �or zero-strain direction
�15,16�� orientation is predicted. A simple nonlinear analysis
is used in these calculations and this approach also predicts
the characteristic time, �c, required for cells to obtain their
steady-state orientation �11�. This time is strongly frequency
dependent for stretch frequencies smaller than about 1 Hz; at
larger frequencies, �c is frequency independent. We explain
these observations using the dynamical theory that identifies
the 1 Hz time scale with the time for local, molecular reor-
ganization of the cytoskeletal components. The much larger
value of �c itself—on the order of 103–104 s, is related to
the much longer time scale for the cooperative reorientation
of the cytoskeleton.

II. THEORETICAL MODEL

For simplicity, we consider stationary, mechanically ac-
tive cells that have already established mature focal adhe-
sions and are in mechanical equilibrium with the surrounding
matrix. In a coarse-grained picture, we focus on the sum of
the forces exerted by the cell via its focal adhesions, modeled

as a pair of equal and oppositely directed acto-myosin con-
traction forces �14� that form a dipole that is the product of
the distance, l�, between the oppositely directed forces, f�. The
typical magnitude of the dipole strength for contractile cells,
P��f ��l��0, is �10−11 J �14�. This can be generalized to
include interactions of many cells �17�. For simplicity, we
focus on needlelike cells, e.g., muscle cells and fibroblasts;
for these cells �aligned along x on the surface of a substrate�,
the dipole is: Pij = P�ix� jx.

The local activity of the cell is an important part of our
model that distinguishes cells from nonliving matter. Cells
actively adjust their contractility by reorganizing the focal
adhesion and stress fibers to maintain an optimal �or set-
point� xx component of the stress, ��, or strain U� in the
adjacent matrix �14–16�. We convert these quantities to en-
ergies by defining P����a3�U�Ea3�0 where a3 is the cell
volume and E is the Young’s modulus; the expressions are
also proportional to a function �15� of the Poisson ratio of the
matrix, �, whose detailed form is different for cells in three
dimensions or on substrates. This is not important for the
scaling relationships discussed here. We take P��0 and note
that the cellular contraction dipole P�0. In the presence of
external stretch �converted to energy units by multiplying by
a3�, with magnitude Pa�t��0 �that can be time dependent�,
acting at an angle � relative to the cell axis, the homeostatic,
set-point total local stress in the matrix is achieved when the
cellular force dipole obeys

P = − P� + 	0Pa�t��
 − 
1� , �1�

where 
=cos2 �. This form is a generalization of the cases
�15,16� in which �i� the cellular dipole is controlled by the
matrix stress where 
1=0 �ii� the dipole is controlled by the
matrix strain and 
1=cos2 �0=
0, where �0 is the zero-strain
direction given by cos2 �0=� / �1+��. In both cases, 	0 is a
function of only �; in general it can be either positive or
negative corresponding to matrix stretch that causes either a
decrease or an increase in the cytoskeletal forces, respec-
tively. The experimental situation is not yet clear, with some
reporting a decrease �4,18� while others measuring an in-
crease, at least of the passive elastic response of the cytosk-
eleton �18,19�. The general response function treated here
allows both the parallel and perpendicular components of the

PHYSICAL REVIEW E 80, 060901�R� �2009�

RAPID COMMUNICATIONS

1539-3755/2009/80�6�/060901�4� ©2009 The American Physical Society060901-1

http://dx.doi.org/10.1103/PhysRevE.80.060901


external stress to modulate the cellular dipole �17,20�.
Deviations from the set-point result in internal forces

within the cell that reestablish the optimal force condition.
These forces can be derived from derivatives of an effective,
harmonic free energy �21� due to cell activity, Fa, that in-
cludes the active processes within the cell that establish cel-
lular response to its local environment,

Fa =
1

2
�P�2�− p + pa�t��
 − 
1� − 1�2, �2�

where �P�2 �with units of energy� is a measure of cell activ-
ity that establishes the set point. We define dimensionless
quantities: p= P / P�, pa�t�= Pa�t� / �	0P�� which are the cell
dipole and external stress relative to the set point, P�. We
define the dimensionless energy: fa=Fa / ��P�2� whose mini-
mum �zero force condition� determines both the dipole mag-
nitude and orientation.

In addition to the cell activity, we also consider the effect
of the mechanical matrix forces �15� that is proportional to
the product of Pa�t� and P. This energy, fm, is written �15� in
terms of the dimensionless quantities defined above,

fm = cppa�t��
 − 
0� , �3�

where c= �1+��	0 / �Ea3��. Since cells are contractile
�p�0� the mechanical energy, fm, is minimized for dipoles
parallel to the applied stretch �pa�0�. The total effective,
dimensionless free energy, f is f = fm+ fa.

In the absence of external stresses, it has been observed
that cells align in a random manner �11–13�. At low frequen-
cies, both random �11� and parallel �4,7,28� alignment are
observed; this suggests competition between the elastic en-
ergy given by f and noise that can arise from either thermal
motion of cellular proteins or from active forces such as
myosin contractility. We consider a simple model of active
noise similar to that of �22� in which the noise, ��t�,
decorrelates in time with a rate 1 /�n so that ���0���t�	
�T� exp�−t /�n� /�n �where T� is a constant that in the limit
of �n→0, is the effective temperature�. The system is de-
scribed by an order parameter , a free energy, g��, and an
intrinsic relaxation time, �0. The noise �22� results in fluctua-
tions of the temporal Fourier transform of the order param-
eter, ���, given by ������2	�T����2+�0

2��1+�n�2��−1.
Here �0 is proportional to g��� /�0 where the second deriva-
tive of g is evaluated at the mean-field value of the order
parameter, where g���=0. In the limit that the noise decays
on short time scales �relative to the experimental time scale
characterized by �; see below�, ��n�1, the fluctuations are
the same as those of equilibrium systems with an effective
temperature, T�. For slowly varying noise, the effective tem-
perature becomes frequency dependent due to the factor �1
+�n�2�−1. For simplicity, and as an attempt to motivate ex-
periments that measure the character of the effective noise
via the angular orientations, we consider the case where �n is
small and use a Boltzmann-like distribution with a competi-
tion between the elastic energy given by f and T�. Experi-
ments �23� have found that a Boltzmann-like distribution can
describe cell orientations on curved substrates. The effective
temperature has been estimated �24� as �106 room tempera-

ture since the randomization of the adhesions involves the
disruption of �105 bonds, each of which has an energy of
�10 times room temperature. The large number of bonds
involved may account for the long times �5000 s� needed for
cells to reach their steady-state orientation �11�.

III. DYNAMICS

We now predict the orientational response of cells in the
presence of time-varying stress: pa�t�= pa�1−cos �at�. In
general, the dynamics of the cytoskeleton are governed by
complex, viscoelastic processes �2� involving actin polymer-
ization and assembly via crosslinkers into contractile bundles
due to the action of myosin motors. In addition, these con-
tractile forces are responsible for the stabilization and growth
�25,26� of focal adhesions that connect the cytoskeleton to
the substrate or matrix. The representation of an entire cell as
a force dipole, as described above, coarse grains over all
these dynamics. In Ref. �15� the force dipole was treated as a
rigid rotor �assuming that cell size and shape were fixed and
ignoring fluctuations�. This predicts dynamics with a single,
intrinsic time scale.

However, experiments show that cells respond to stress on
multiple time scales �2� due to the various processes men-
tioned above. It is thus more reasonable to model the dynam-
ics by considering separately, the relaxation to steady state of
the dipole magnitude �related to the concentration of actin
bundles and myosin motors� and its orientation �related to
the correlations between the assembly of neighboring
bundles in response to stress�. This suggests the following
equations �noise effects are discussed later� for relaxation
that are linear in the generalized forces �15� given by the
derivatives of the free energy with respect to the appropriate
degree of freedom. Due to the separation of time scales, dis-
cussed below, we ignore cross terms in which the force,
�f /�p�t� affects the dynamics of ��t� and vice versa,

dp�t�
dt

= −
1

�p
fp;

d��t�
dt

= −
1

��

f�;
d


dt
= −

1

��

4
�1 − 
�f
,

�4�

where fx=�f /�x. The last equation for 
=cos2 � is obtained
using the chain rule.

Based on experiments �2,18,19�, it has been suggested
that the liquification and repolymerization of the actin after
stress is applied, occurs on a short time scale of the order of
several seconds, while the correlated reorientation occurs on
much longer time scales �of the order of many minutes�
�4,7,11�. We thus assume that �p���: the time scale associ-
ated with changes in the magnitude of the dipole is much
faster than that associated with the dynamics of its highly
correlated reorientation. In this approximation, the dipole
magnitude reaches a steady-state value in a short time; this
value may be time dependent and oscillatory due to the cy-
clic nature of the applied time-dependent stress.

We therefore first solve for p�t� treating 
�t�, which is
much more slowly varying, as a constant. The dynamical
equation for p�t� is linear. For times long compared with �p
we can neglect a term proportional to exp�−2t /�p� and find
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p��� = − �1 + g�
�� − g�
�
 cos �� + � sin ��

�1 + �2� � , �5�

where g�
�= pa�c�
−
0�+ �
−
1��; the dimensionless fre-
quency �=�a�p and time �= t /�p both scale with the short
relaxation time �p. Thus, differently oriented stress fibers
have different force magnitudes. We now use this expression
for p�t� in Eq. �4� for 
�t�.

The nonlinear dependence of the dynamics on the external
stress can be treated approximately by noting that we are
interested in the dynamics for time scales of the order or
larger than ��. If the lowest frequencies of the cyclic stress
satisfy �a�p=���p /��, we can average the sinusoidal terms
over one cycle since the response of 
�t� occurs on much
larger time scales �even for relatively small values of ��1�.
The linear sinusoidal terms vanish but there is a nonlinear,
frequency-dependent contribution from the quadratic terms.

The effective free energy, using Eq. �5�, averaging over a
cycle, and keeping terms linear in c�1 is

fe = − cpa�
0 +
pa

2�
1

4�1 + ��2 �2c�3 + 2�2��
0 + �2�
1� ,

�6�

where �
i=
−
i. We use this expression for f in Eq. �4� for

�t�; the results compare well with numerical solutions of
Eq. �4� when �p���. Note that the frequency dependence in
f arises from the nonlinear dependence of the dynamics on
the external stress, pa.

The dimensional free energy, Fe= fe�P�2, competes with
the noise in the system that we model as an effective tem-
perature, T�=Ts�P�2pa

2 where Ts is a scaled temperature. The
probability of a given cellular orientation, W���, as a func-
tion of the dimensionless frequency, �, is proportional to
exp�−fe / �Tspa

2�� and is shown for various frequencies and
temperatures in Fig. 1. For Ts=0.1, at low frequencies, the
angular distribution is relatively broad, while for high fre-
quencies, the distribution has a maximum at an angle close to
� /2 for the case of stress as a set point and at the zero-strain
direction, �0, for strain as a set point �27�. At larger values of

the effective temperature, the distribution flattens out even
for relatively high frequencies. The nearly perpendicular ori-
entation for high frequencies has been interpreted �14–16� in
terms of the dynamic frustration of the cell: at high frequen-
cies �a�p�1, the cell cannot respond to the external stress
and would be dynamically frustrated if it were to remain
parallel to the applied stress �which does lower the mechani-
cal energy� or even random �in response to the noise�. The
cell thus reorganizes its cytoskeleton to the nearly perpen-
dicular �or for the case of strain as the set point, the zero-
strain� direction where there is no time-varying stress �or
strain� and homeostasis can be achieved. The present calcu-
lations show how the orientation is a function of the cell
activity, the mechanical energy and the noise.

The average value of 
=cos2 � is calculated as a function
of the frequency of the applied stress for several different
effective temperatures in Fig. 2 for the cases of both stress
and strain as set points. At very low effective temperatures,
the average angle is nearly perpendicular �or in the zero-
strain direction, �0, for cells whose set point is determined by
matrix strain� at high frequencies, due to the dynamical frus-
tration discussed above. More generally, the frequency-
dependent orientation angle at low temperatures is given by
the minimum of Eq. �6�; for the case of stress as a set point
we can write an approximate expression that is correct in
both the high ���1� and low-frequency limits: 1����c:
�
	�2c / pa��1+�2� /�2. The full analytic expression is
shown in the left-hand plot of Fig. 2 as a dashed line that
compares very well with the numerical solution. At very low
frequencies, the average angle is nearly parallel and for both
the cases of stress and strain as set points: �
	1
− paTs / �2c�, consistent with experiments �4�. At higher effec-
tive temperatures, the orientation distribution is random and
the average value of 
 �in two dimensions� is 1/2 for all
frequencies. At intermediate temperatures, in our model
where both the cell activity forces and the noise dominate the
mechanical forces �i.e., c=1 / ��Ea3��1, T�� P�2 / �Ea3� but
T���P�2� we have the interesting case of nearly perpen-
dicular orientation for high frequencies, but nearly random
orientation for low frequencies �see Fig. 2�. This regime
seems to be applicable to recent experiments reported in
�11�; however, some cell types studied �28� show a some-
what parallel and nonrandom orientation at low frequencies.
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FIG. 1. �Color online� W���, the distribution of angles vs angle
�in radians� of cells �in steady state� controlled by stress �left hand�
and strain �right hand�. The dashed curves are for Ts=0.001 and
scaled frequencies �=10,0.5,0.001 �uppermost right, lower right
and left, respectively�. The solid curves are for Ts=0.1 with �
=10,0.5 �upper right and lower right, respectively�; for the solid
curves, we show 5W��� for clarity. The distributions are normalized
to unity in the physical interval 0���� /2. We take �=1 /2, c
=0.001, and p=0.1. For smaller values of �, the peaks in the right-
hand panel move to the right.
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FIG. 2. �Color online� The average of �
	= �cos2 �	 �in steady
state� vs the scaled frequency �=�a�p for cells controlled by stress
�left-hand plot� and strain �right-hand plot�. The scaled temperatures
are Ts=10,1 ,0.1,0.001 as one looks at the graphs from top to bot-
tom in the left-hand panel at high frequencies and in the right-hand
panel from the bottom to the top at low frequencies. Here �=1 /2,
c=0.001, p=0.1.
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These differences may be attributed to different values of the
scaled, effective temperatures for various cell types.

The dynamical theory is now used to calculate the relax-
ation of the system from a random orientation to the steady-
state orientation. As in the experiments �11�, we determine
the characteristic time, �c, for this relaxation. In the absence
of fluctuations, it can be calculated from Eq. �4� by solving
for the steady-state value of 
=
s where �fe /�
=0, and
writing the dynamical equation in terms of 
s; since the free
energy, Eq. �6� is quadratic in 
, the dynamical equation is
exactly written as

d
�t�/dt = − 4
�1 − 
���
−1f
s
s

e �
 − 
s� , �7�

where the double subscript indicates a second derivative.
This equation can be integrated analytically to find the time
as a function of 
�t�. The results, that depend on the
frequency-dependent effective free energy, fe, are in very
good agreement with a numerical integration of the full
equations of motion for p�t� and 
�t� starting from the origi-
nal �frequency-independent� free energy, f .

From the analytical integration, we define the characteris-
tic time as the time at which the orientation is close to its
steady-state value: 
�t�=
s�1+��, where ����1. For small �,
this is approximately

�c = ��
 log 1/����/�4f
s
s

e 
s�1 − 
s�� . �8�

For frequencies �2�c�1 �note that � can still be less than
1�, f
s
s

e �1 /2�pa
2�2 / �1+�2� and 
s= �2c�1+�2�

+ pa�2
1� / �pa�2�; using this in Eq. �8� predicts the scaling
of the characteristic time with frequency and magnitude of
the external stress. At high frequencies �c approaches a con-
stant value that scales with the long time scale �� and is
amplified further by a factor of 1 / pa

2 for the case of strain
and 1 / �cpa� for the case of stress as a set point, assuming
1� pa�c At low frequencies, the time �c increases as 1 /�2

with a divergence when 
s=1 which occurs when
2c / ��2pa�1. This transition does not occur at higher effec-
tive temperatures where the orientation is random at low �
�Fig. 2�.

This behavior is in qualitative agreement with experiment
�11�. Note that since typically pa�1 and cpa�1, the char-
acteristic time is even larger than the intrinsic relaxation
time, �� and this might explain the long times observed in
experiments �11�. Thus, although the crossover between low
and high-frequency behavior occurs at �=�a�p�1 and is
determined by the relatively short time scale associated with
liquification and repolymerization of the cytoskeleton, here
termed �p, the time it takes for the cell to reach its steady-
state orientation is much longer and is related to ����p; in
addition this time is amplified by a large factor related to
1 / pa and 1 /c, and becomes even larger as the frequency is
decreased.
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